Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland
نویسندگان
چکیده
The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.
منابع مشابه
Greenland ice sheet surface mass balance 1991–2000: Application of Polar MM5 mesoscale model and in situ data
[1] The Polar Pennsylvania State University–National Center for Atmospheric Research Fifth-Generation Mesoscale Model (Polar MM5) regional climate model was run over the North Atlantic region for 1991–2000. We analyze 24-km output over the Greenland ice sheet to evaluate spatial and temporal variability of the surface mass balance and its subcomponents. The model output is compared with 3 years...
متن کاملMapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with Greenland in situ measurement
[1] Snow/ice albedo is a critical variable in surface energy balance calculations. The Moderate Resolution Imaging Spectroradiometer (MODIS) data have been used routinely to provide global land surface albedo. The MODIS algorithm includes atmospheric correction, surface reflectance angular modeling, and narrowband to broadband albedo conversion. In an earlier study, a ‘‘direct retrieval’’ metho...
متن کاملInter-Annual and Geographical Variations in the Extent of Bare Ice and Dark Ice on the Greenland Ice Sheet Derived from MODIS Satellite Images
Areas of dark ice have appeared on the Greenland ice sheet every summer in recent years. These are likely to have a great impact on the mass balance of the ice sheet because of their low albedo. We report annual and geographical variations in the bare ice and dark ice areas that appeared on the Greenland Ice Sheet from 2000 to 2014 by using MODIS satellite images. The July monthly mean of the e...
متن کاملLight-absorbing impurities in Arctic snow
Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content...
متن کاملElevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014
Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and tem...
متن کامل